High energy density plasma science with an ultrarelativistic electron
نویسندگان
چکیده
An intense, high-energy electron or positron beam can have focused intensities rivaling those of today’s most powerful laser beams. For example, the 5 ps ~full-width, half-maximum!, 50 GeV beam at the Stanford Linear Accelerator Center ~SLAC! at 1 kA and focused to a 3 micron rms spot size gives intensities of .10 W/cm at a repetition rate of .10 Hz. Unlike a ps or fs laser pulse which interacts with the surface of a solid target, the particle beam can readily tunnel through tens of cm of steel. However, the same particle beam can be manipulated quite effectively by a plasma that is a million times less dense than air! This is because of the incredibly strong collective fields induced in the plasma by the Coulomb force of the beam. The collective fields in turn react back onto the beam leading to many clearly observable phenomena. The beam paraticles can be: ~1! Deflected leading to focusing, defocusing, or even steering of the beam; ~2! undulated causing the emission of spontaneous betatron x-ray radiation and; ~3! accelerated or decelerated by the plasma fields. Using the 28.5 GeV electron beam from the SLAC linac a series of experiments have been carried out that demonstrate clearly many of the above mentioned effects. The results can be compared with theoretical predictions and with two-dimensional and three-dimensional, one-to-one, particle-in-cell code simulations. These phenomena may have practical applications in future technologies including optical elements in particle beam lines, synchrotron light sources, and ultrahigh gradient accelerators. © 2002 American Institute of Physics. @DOI: 10.1063/1.1455003#
منابع مشابه
Formation of Ultrarelativistic Electron Rings from a Laser-Wakefield Accelerator.
Ultrarelativistic-energy electron ring structures have been observed from laser-wakefield acceleration experiments in the blowout regime. These electron rings had 170-280 MeV energies with 5%-25% energy spread and ∼10 pC of charge and were observed over a range of plasma densities and compositions. Three-dimensional particle-in-cell simulations show that laser intensity enhancement in the wake...
متن کاملاثر کانال یونی بر خودکانونی شدن پالس لیزری گاؤسی در پلاسماهای کم چگال
We have considered the self-focusing of a Gaussian laser pulse in unmagnetized plasma. High-intensity electromagnetic fields cause the variation of electron density in plasma. These changes in the special conditions cause the acceleration of electrons to the higher energy and velocities. Thus the equation of plasma density evolution was obtained considering the electrons ponderomotive force. T...
متن کاملDense Helical Electron Bunch Generation in Near-Critical Density Plasmas with Ultrarelativistic Laser Intensities
The mechanism for emergence of helical electron bunch(HEB) from an ultrarelativistic circularly polarized laser pulse propagating in near-critical density(NCD) plasma is investigated. Self-consistent three-dimensional(3D) Particle-in-Cell(PIC) simulations are performed to model all aspects of the laser plasma interaction including laser pulse evolution, electron and ion motions. At a laser inte...
متن کاملParametric amplification of laser-driven electron acceleration in underdense plasma.
A new mechanism is reported that increases electron energy gain from a laser beam of ultrarelativistic intensity in underdense plasma. The increase occurs when the laser produces an ion channel that confines accelerated electrons. The frequency of electron oscillations across the channel is strongly modulated by the laser beam, which causes parametric amplification of the oscillations and enhan...
متن کاملPlasma Wave Acceleration of Electron in Bubble Regime in Presence of a Planar Wiggler
The plasma wave acceleration of electron in the bubble regime is investigated in a new configuration containing a planar wiggler. The space-charge field of the laser-created ion channel can focuse and stabilize the electron trajectory to guide it toward the acceleration region. The high-gradient plasma wave field can resonantly accelerate the trapped electron to higher energies in the presence ...
متن کاملCharacterization and Phase Transformation of Spherical YSZ Powders Fabricated Via air Plasma Spray Method
Air plasma spray (APS) process is used to produce high density and flowability spherical powders. Phase transformation that occurred in this process isn’t well known. In this paper, the YSZ powders have been sprayed in water to investigate the morphology changes and phase transformations via air plasma spray (APS) method. Phase analysis of powders was examined by XRD and the crystallite size an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002